Twin Cities ANSYS[®] User Meeting

November 2010

Nonlinear Convergence

Content by Epsilon FEA, LLC

Nonlinear Convergence

Types of Nonlinearities

- 1. High Deformation (NLGEOM)
- 2. Contact
- 3. Material

Types of Non-Convergence

- 1. Element shape distortion
- 2. Contact Status
- 3. Residuals Exceeds Allowable

How to Fix it

- 1. Pinpoint the source of instability
- 2. Twelve Case Studies
- 3. Leverage Experience

Types of Nonlinearities

- 1. High Deformation (NLGEOM)
- 2. Contact
- 3. Material
- Stiffness Matrix is built using material moduli and *geometry*

- As the geometry (coordinates) changes, so does the K Matrix
- For each iteration, a new stiffness matrix is made based on the previous iteration's deflections.

Types of Nonlinearities

- 1. High Deformation (NLGEOM) Contact
- 2. Contact
- 3. Material

 After each iteration, a new guess is made for activation/location of springs and the corresponding stiffness (penalty method)

Types of Nonlinearities

- 1. High Deformation (NLGEOM)
- 2. Contact
- 3. Material
- Stiffness Matrix is built using material *moduli* and geometry

• After each iteration, a new material stiffness is computed

- 1. Element Distortion
- 2. Contact
- 3. Material
- With high deformation (NLGEOM), node locations are updated with deflections
- Element shapes changes accordingly
- New element shape no longer is acceptable

RESTART INFORMATION

- 1. High Deformation (NLGEOM) Contact
- 2. Contact
- 3. Material
- Contact status changes endlessly (aka 'chattering')
 - Gets in activation/deactivation loop on set of springs
 - Closed > Open > Closed > Open > ...
 - Often just 2 20 elements are the offenders
 - Internal contact algorithm doesn't recognize the repetition
 - ANSYS can just keep grinding away at it

F = KX

- 1. High Deformation (NLGEOM)
- 2. Contact
- 3. Residuals Exceed allowable
 - Estimate is made for materials and geometry giving [K₁]
 - Assumes some contact status
 - Assumes some point on the material curve
 - A resulting [K₁]⁻¹[F] gives a resulting [X₁]
 - A resulting [K₁][X₁] gives a resulting [F₁]
 - Error Norm compares [F₁] to boundary condition [F]
 - Norm results in a single scalar (purple line)

8

Norm compared to criteria (blue line)

- 1. High Deformation (NLGEOM)
- 2. Contact
- 3. Residuals Exceed allowable, cont'd
 - Norm compare [F₁] to boundary condition [F]
 - New estimate is made for [K₂]
 - Updated contact
 - Updated Geometry
 - Updated moduli
 - Default is "Newton Raphson" method
 - Interpolates/extrapolates linearly based on previous iteration
 - Cycle repeats to [K_n] until the error norm is less than criteria
 - Convergence depends on the quality of each new estimate [K_n]!!

How to Fix it

- Pinpoint Location of instability
 - Debug on coarse/simplified model
 - Interpret output from solver
 - View the unconverged solution
 - In classic, read in set 999999
 - Leverage diagnostics to find offending elements
 - Show distorted elements
 - Store Newton Raphson Residuals
 - Has to be set *before* solving
 - NLDIAG, NRRES, ON
 - A lone hotspot will usually dominate the norm.

Set to non-zero

How to Fix it

• 12 Case Studies

- 1. DOF Exceeded at 1st Substep
- 2. Identical Bisections
- 3. Small Time Step Fails
- 4. Changing Contact Status
- 5. Contact Penetration
- 6. Large Plastic Strain Increments
- 7. Element Distortion
- 8. DOF exceeded at nth Substep (contact)
- 9. DOF exceeded at nth Substep (material)
- 10. Residuals too High (contact)
- 11. Residuals too High (material)
- 12. Arc-Length Method (material)

DOF Exceeded at 1st Substep

- Not really a "convergence failure"
- Numerical Instability

constrained model.

- Caused by singular matrix
- Unconstrained problem
- Problem setup is flawed you forgot something!
 - Check BC's, Loads, Materials

```
*** WARNING ***
                                                   25.366
                                                            TIME = 15:26:06
                                         CP =
There are 6 small equation solver pivot terms.
*** ERROR ***
                                         CP =
                                                   25.381
                                                            TIME = 15:26:06
The value of UX at node 29 is 854093480. It is greater than the
current limit of 1000000. This generally indicates rigid body motion
as a result of an unconstrained model. Verify that your model is
properly constrained.
*** ERROR ***
                                                   24.789
                                         CP =
                                                            TIME = 15:24:17
A small negative equation solver pivot term has been encountered at the
UZ degree of freedom of node 20. Check for an insufficiently
```


Case Study 1, Cont'd

DOF Exceeded at 1st Substep

- Run on simplified model must find the source
 - Switch to linear materials
 - Switch to bonded contact
 - Unselect whole components
- If simplification isn't easy, there's a few old tricks:
 - 1. Add a few random DOF constraints to view a converged substep
 - 2. Add weak springs
 - Occasionally this all that's needed
 - Be careful! (Kinda bad form, but it's not uncommon)
 - 3. Run thermal expansion case view deflections
 - 4. Run modal extraction view deflections

Identical Bisections

- Newton Raphson estimates for [K_n] are not changing!
- Often is caused by 'stepped' loading (rather than 'ramped')
 - A bisection in time is a bisection in 'ramped' loads
 - If load is 'step' applied, bisection has no benefit
 - Ramped vs. Stepped controlled by KBC
 - Default is ramped
 - Constraint Equations (CE's) enforced deflection are stepped!
 - Contact interference defaults to ramped
 - Maybe it's set to 'stepped' via KEYOPTION 9?
 - Might Try Arc-Length Method

Small Time Step Fails

- Could be gross over-application of loads
 - Unit problem orders of magnitude greater loading
- If it doesn't converge at time = 0.05 it probably won't
 - If it doesn't converge at time =0.01 it almost definitely won't
- New estimate is made for [K_n]
 - Updated contact
 - Updated Geometry
 - Updated moduli
 - Default is "Newton Raphson" method
 - Interpolates/extrapolates linearly based on previous iteration
- Cycle repeats to until the error norm is less than criteria

Changing Contact Status

- AKA 'Chattering'
 - Gets in activation/deactivation loop on set of springs
 - Closed > Open > Closed > Open > ...
 - Often just 2 20 elements are the offenders
- Rare in recent versions of ANSYS
- Subtle changes in mesh can perturb solution off instability point
- Alter FKN by 5-10X lower.
 - Verify acceptable penetration

Contact Penetration

- Not really a "convergence failure"
- Rare failure in recent ANSYS versions
- Look for unrealistically constrained over penetration
 - Like a 2" press fit on a 3" dia. Pipe
 - Look for unrealistically soft FKN (like < 0.0001)
 - Default is 1.0
 - Look for manually set FTOLN to small value (like 0.01)
 - Default is 0.2 (meaning roughly 20% of element depth)
- Remember to leverage restarts
 - Make changes and restart from last good substep

Large Plastic Strain Increments

- Not really a "convergence failure"
- Max plastic strain increment defaults to 15%
 - That's pretty large for path-dependent problem
- Rare failure
 - Large strain increment usually results in element shape error first
- Look for unrealistic material model (unit problem?)
- Take smaller steps while applying load
- Hard to imagine increasing CUTCONTROL beyond 15%...

*** NOTE *** CP = 163.193 TIME= 10:35:56 The incremental plastic strain computed in this iteration is larger than the criterion of 15% leading to bisection. You may try incrementing the load more slowly by increasing the number of substeps or use the CUTCONTROL command to re-specify this criterion.

Element Distortion

- Common Failure
- Smaller time steps often fixes this
- Look for unrealistic loads (unit problems)
- Pinpoint offending elements
 - Use NLDIAG to locate offending elements
 - Future ANSYS version will specify offending elements
 - Simplify problem Unselect components/regions
 - Do element shape checking on previous iteration or unconverged solution
- Mixed U-P Formulation (Keyoption 6 for SOLID186)
 - Magic Bullet!
 - Longer solutions (25% or so?)
 - Adds pressure DOF to each element to prevent collapsing

RESTART INFORMATION

Element Distortion, cont'd

- Switch to Explicit Analysis (Autodyne/LS-Dyna)
 - Short duration or stead state only
- Change the original mesh
 - Improve element quality
 - In Workbench switch shape checking to 'aggressive mechanical'
 - Skew original mesh to allow for known directional deformation

20

- Mesh Morphing
 - Emerging Technology. (Proceed with skepticism in 3D).
 - Terrific Article in PADT's Focus (Eric Miller) images below

DOF exceeded at nth Substep (contact)

- Look for pass-through of contact surfaces
 - Increase pinball region (little cost to have very large pinball)
 - Use displacement-based BC's rather than Force-based
 - Use STABILIZE command to impede large deflections
 - Use weak springs to impede large deflections
- Look for problems in load application / stability
 - See images for example

DOF Error

DOF exceeded at nth Substep (material)

- Use displacement-based BC's rather than Force-based
- Analysis goal if running out to plastic failure
 - Represents material failure
 - Modeling actual failure is usually done with explicit (e.g. LS-DYNA)
 - Try Arc-Length Method (See Case 12)
 - Approach failure to sufficient accuracy
 - Example (right): failure is around 990 lbf

Residuals Too High (contact)

- Very Common!
- Smaller time steps (shouldn't take more than 20)
 - If fails at <5% load, it likely will never make it
- Soften contact stiffness (FKN) to 0.01
 - Magic Bullet!
 - Default stiffness is quite aggressive (to avoid user error)
 - Check for acceptable contact penetration
 - (with 0.01 stiffness typical penetration is <0.0005" for metal)

	-	Force Col Bisection	overgence Occurred						
440 17.6 10.601 2.71+-2 1.07e-3		M	V	M	M	A	Ņ	1	
3		12.	38. 24.	30.	36.	42. 4	a. 54.	61	
	6	12. 18.	24.	30.	36. 4	12. 41	L 54.	61	

Residuals Too High (contact) cont'd

- Pinpoint the offending location
 - Look at last converged solution as well as unconverged (999999)
 - Check status/penetration/pressure
 - View the residuals of the unconverged load step
 - NLDIAD,NRRES,ON

Displacement 2

Components: -0.425, Free, Free in

Residuals Too High (contact) cont'd

- Examine the location of high residuals often solution is apparent
 - Look for regions to set to bonded contact
 - Soften contact stiffness (FKN) for just a few elements
 - Make new contact pair for small location
 - Switch to symmetric contact
 - Refine/alter the mesh
 - Switch to penalty method
 - Higher penetration than Augmented Lagrange
 - Switch to contact detection at nodes
 - Switch to spurious contact detection
 - Use U Convergence instead of F(orce).
 - Best to turn on F convergence to stabilize final state
 - Loses some path-dependent accuracy

Residuals Too High (material)

- Very Common!
- Smaller time steps (shouldn't take more than 20)
 - If fails at <5% load, then it likely will never make it!</p>
- Pinpoint the offending location
 - View the residuals of the unconverged load step (see Case 10)
- Try alternate material models
 - Different models may have nearly identical results, but converge easier. (such as hardening model, vs. strain energy model).
 - Simplify the material model should I really bother with a 9-parameter Curve fit?

Residuals Too High (material) cont'd

- Switch to Linear Material for offending elements if they are not critical
 - Especially singularities
- Try VT Accelerator
 - Requires extra licensing (HPC)
 - See PADT's Focus article (image right)
 - Only effective for some material models
- Be SURE you understand the material model
 - Check a given nodal stress/strain

- Build simple block test case
 - Should match hand-calcs
 - Look for unit errors

Convergence on Test Fan Blade Large Deflection Stress

Standard

Force Convergence Value (Lbf,

0.01

Arc-Length Method (Material)

- A few classes of problems are unsuited for Newton Raphson
- Arc-length method is alternative algorithm to develop new [K_n]
- See PADT's Focus article for details

Leverage Expertise

Send us your Problem Models

- One hour of help, can save a week of struggles
 - Convergence can require trial and error
- We transfer the knowledge and models back to you
- Establish a Purchase Agreement with Epsilon FEA
 - Setup Epsilon FEA as approved supplier (plus NDA)
 - 5 hour agreement would cover almost any single convergence case (\$600).
 - Do the paperwork today, then just pick up a phone when problems arise

Epsilon FEA is your local ANSYS partner!

Contact : Rod Scholl, Principal Analyst Rod.Scholl@EpsilonFEA.com 612.605-6894

Discussion

Copyright © 2010