

Twin Cities ANSYS[®] User Meeting

August 2012

Weld Analysis

- 1. Explicitly Modeled Welds
- 2. Extracting Stresses for Hand-Calculations
 - Path Operations
 - Stress Linearization
- 3. Designing / Lifing Welds - Chris Wright P.E.

Explicitly Modeled Welds

- 1. Material Properties are undefined
 - Heat affected zone
 - Composition varies spatially due to material mixing/cooling rates
 - Would need fatigue properties gathered at various R-ratios and compositions?
 - Welding/Cooling rates depend on weld process/operator
- 2. Geometric Variations also hard to assess
- 3. Process would be similar to Soldering/Semiconductor
 - 1. Model weld bead explicitly
 - 2. Use viscoplastic material model (e.g. Anands)
 - 3. Have modulus approach zero above weld temperature
 - 4. Use Element Birth/Death to "activate" along the weld line
 - 5. Use Heat Generation along weld as elements are activated
 - 6. Cool with HTC's for quiescent air... 5 btu/ft^2/sec-F?
- 4. Bound problem to assess (large) variation!

Extracting Stress Data

1. Path Operations, extracts stresses along specified path.

 In classic steps are to define a path, and then map a result onto the path, then finally plot/list the results.

Extracting Stress Data

- 1. Path Operations, extracts stresses along specified path.
 - In classic steps are to define a path, and then map a result onto the path, then finally plot/list the results.
 - Highly Dependent on Mesh, and selection of points!

Graph 🗣	Tab	ular Data			
Animation 🕨 🔳 🛄 🔛 💡 10 Frames 🔍 2 Sec (A		Length [in]	Value [psi]		
0.	1	0.	246.17		
840.57	2	5.8926e-002	243.05		
	3	0.11785	239.94		
700. –	4	0.17678	236.83		
	5	0.2357	233.73		
$= \frac{600.1}{100}$ Einer 040	6	0.29463	230.82		
<u>ه</u> 500 Fine: 840	7	0.35355	227.9		
	8	0.41248	224.99		
400. –	9	0.4714	222.09		
300. –	10	0.53033	219.39		
******	11	0.58926	216.68		
175.05	12	0.64818	213.98		
0. 0.4 0.8 1.2 1.6 2. 2.8284	13	0.70711	211.31		
[in]	14	0.76603	208.89		
	15	0.82496	206.47		
Messages Graph	16	0.88388	204.05		

ANSYS User Meeting

1. Path Operations, Stress Linearization

- Relatively sensitive to Mesh, and selection of points!
- Will match hand-calc's with no KT's applied (in theory)
- Devolves stress into tensile and bending components!

ANSYS User Meeting

ANSYS and Weld Design

Twin Cities ANSYS User Group August 22, 2012

Design Problem

DESIGN FUNCTIONS

Connection (not weld) design Load transfer Load path definition Determine loading Magnitude Distribution Fabrication decisions Weld type Geometry constraints Process variables Quality assurance Criteria Working stress Fatigue Assessment

CONSTRAINTS

Design code Prescriptive requirements Allowable stress Methodology Fabrication Material weldability Set up and tooling Thermal effects Labor intensive Process qualifications Welder skills

Quality Assurance Customer requirements Code requirements

8

Modeling Problem

PARAMETERS

Weld size

Туре

Extent

BEHAVIOR

Static strength

Fatigue

response

Thermal

response

CONVENTIONAL DESIGN

Weld load carried by shear across throat

Direct loads distributed uniformly Moment reactions vary radially

CRITERIA

0.3Fu (AISC)

0.6S for groove weld shear (ASME)

0.49S for fillet weld shear (ASME) Separate fatique assessment

IMPLICIT WELD MODEL

Weld joint defined by coupling or constraints Weld loading developed by equilibrium and continuity

Nodal forces define connection load distribution

Apply design code requirements

EXPLICIT WELD MODEL

Weld contour defined in nodal mesh Peak stress calculated by path operation

TRADE-OFFS

Implicit	Explicit
Weld size	Weld design
determined by from	required
results	beforehand
Real world	Weld contours
features implied	and metallurgy
by Code	idealized
Mesh refinement	Refined mesh
not required	required
No remesh required	Weld redesign
to vary weld size	requires re-
or type	model

Weld Fabrication

Spot weld

Fillet weld with porosity

8

Fillet weld

Flare bevel

Quality Issues

Start and stop craters

Porosity and root opening

Undercut

Chain Link

AISC/AWS Weld Design

Vector sum of unit weld loads

$$\mathbf{Q} = \sqrt{\mathbf{Q_x}^2 + \mathbf{Q_y}^2} = t_{\psi} \sqrt{\left[\frac{\mathbf{V_x}}{t_x L_{\psi}} + \frac{\mathbf{M}\mathbf{y}}{J}\right]^2 + \left[\frac{\mathbf{V_y}}{t_{\psi} L_{\psi}} + \frac{\mathbf{M}\mathbf{x}}{J}\right]^2}$$

Eccentric Loads on Weld Groups -AISC Manual 8 th edition elastic method Normalize weld geometry to the weld group depth 1 — $J = \beta l^3 t_w$ Weld Area = $\alpha l t_w$ Assume — $\mathbf{V}\mathbf{x} = \mathbf{0}; \ \mathbf{V}\mathbf{y} = \mathbf{P}; \ \mathbf{M} = \mathbf{\gamma}\mathbf{P}\mathbf{I}$ $\mathbf{Q} = \mathbf{t} \sqrt{\left|\frac{\mathbf{y}\mathbf{P}\mathbf{l}\mathbf{y}}{\mathbf{\beta}\mathbf{l}^{2}\mathbf{t}_{-}}\right|^{2} + \left[\frac{\mathbf{p}}{\alpha\mathbf{l}\mathbf{t}_{-}} + \frac{\mathbf{y}\mathbf{P}\mathbf{l}\mathbf{x}}{\mathbf{\beta}\mathbf{l}^{2}\mathbf{t}_{-}}\right]^{2}} = \frac{\mathbf{p}}{1}\sqrt{\left|\frac{\mathbf{y}\mathbf{y}}{\mathbf{\beta}\mathbf{l}}\right|^{2} + \left[\frac{1}{\alpha} + \frac{\mathbf{y}\mathbf{x}}{\mathbf{\beta}\mathbf{l}}\right]^{2}}$ Weld stre ss = $\frac{\mathbf{Q}}{\mathbf{t}_{\pi}} = \frac{\mathbf{P}}{\mathbf{I}\mathbf{t}_{\pi}} \sqrt{\left|\frac{\mathbf{Y}\mathbf{Y}}{\mathbf{\beta}\mathbf{I}}\right|^2 + \left|\frac{1}{\mathbf{\alpha}} + \frac{\mathbf{Y}\mathbf{x}}{\mathbf{\beta}\mathbf{I}}\right|^2}$ ŠF _{sn} = 0.3F _n

$$= \frac{0.9.28}{\sqrt{\left\lfloor\frac{yy}{\beta i}\right\rceil^2 + \left\lfloor\frac{1}{\alpha} + \frac{yx}{\beta i}\right\rceil^2}} C_i ID = CC_i ID$$

Ultimate Strength Method

Examp le

P=31.6k A = 10 in l=10 in kl=5 in xl=1 .25 in $\beta = 0.385 \ y = 0.875 \ x = 1.25 \ in \ y = 5$ for 3/8 fillet $t_{w} = 0.265 \text{ in } (D = 6)$ $\mathbf{Q} = \frac{\mathbf{P}}{1} \sqrt{\left[\frac{\mathbf{Y}\mathbf{Y}}{\mathbf{\beta}\mathbf{I}}\right]^2 + \left[\frac{1}{\alpha} + \frac{\mathbf{Y}\mathbf{x}}{\mathbf{\beta}\mathbf{I}}\right]^2} = 5 \ 577 \ \mathbf{b/m}$ Weld stre ss = $\frac{Q}{t}$ = 21 032 psi $C = \frac{0.928}{\sqrt{\left[\frac{\gamma y}{\beta l}\right]^2 + \left[\frac{1}{\alpha} + \frac{\gamma x}{\beta l}\right]^2}} = 0.5258$

= 0. 527 (Table XVIAISC Manual 7th ed by interpolation) Allowable weld load, P = CC1D = (0. 527) (1)(10)(6) = 31.6 k Using the ultimate strength me thod (Table XXIIIAISC Manual 9th ed) C = 0.704 $P = CC_1 ID = (0.7 04)(1)(10)(6) = 42.2 k$

Bracket Plate

•3/8 Bracket plate fillet welded to rectangular base plate fixed at edges

•Weld attachment simulated with rigid constraints

•Weld force distribution compared to AISC Elastic method

ASME Code Design

Prescriptive provisions Specific weld joint details Flange attachment Opening details Weld details Types Sizes Allowable stresses Construction dependent Quality assurance Joint efficiencies Non Prescriptive Provisions Attachments Supports Machinery External loading Piping loads Impact Unique construction Non-circular openings Proprietary items Design by analysis (VIII-2) Lower design margin More restrictive quality assurance Explicit weld analysis rules

Explicit Modeling

Non-Circular Opening

•Pressurized bulkhead 29.5 in OD x 1.75 in thick with reinforced 16.25 x 12.75 rectangular opening

•Face bar attachment simulated with rigid constraints

•Weld force distribution checked against ASME Code opening requirements

Fatigue AWS/AISC

			Threshold				
Description	Biress Category	Constant Cr	P _{TH} ksi [MPa]	Potential Crack Initiation Point	Illustrative Examples		
Section 1—Plain Material Away from Any Welding							
 Base metal, except non-coated weathering steel, with rolled or cleaned surface and rolled or flame-cut edges with ANSI immodules of 1000 or less, but without re-entrant corners. 	А	250 × 10 ⁸	24 [166]	Away from all welds or structural connections			
1.2 Non-coated weathering steel base metal with rolled or cleaned surface and with rolled or flame-cut edges with ANEI smoothness of 1000 or less.	в	120 × 10 ⁸	18 [110]	Away from all welds or structural connections	(A) (B)		
1.3 Flame-cut re-entrant corners, except weld access boles, meeting the requirements of 21.0.3 with ANZI smoothness of 1000 or less.	в	120 × 10 ⁸	16 [110]	From irregularities in surface of re-entrant corner			
1.4 Weld access holes made to the requirements of 2.16.5 and 5.17.1.	c	44 × 10 ⁸	10 [69]	Brom integularities in sucface of re-entrant comer of weld access hole	1.4 (A) (B)		

Fatigue ASME Code

ASME Code Fatigue rules originate from the Coffin-Manson rule: the product of the plastic strain amplitude (half the strain range under reversed loading) produced by a cyclic loading and the number of cycles to crack initiation equals half the fracture ductility:

$$\varepsilon_{\rm p}\sqrt{\rm N}$$
 = $\frac{\varepsilon_{\rm f}}{2}$ = $\frac{1}{2}$ Ln $\left(\frac{100}{100 - \rm RA}\right)$

 $\epsilon_{
m p}$ amplitude of plastic strain

where:

- N number of cycles to crack initiation
- RA Reduction of area from tensile test
- ε_f fracture ductility

Taking the total strain amplitude as the sum of the plastic and elastic strain amplitudes and converting to stress by multiplying by the elastic modulus the cyclic stress amplitude to failure becomes

$$S = \frac{E}{4\sqrt{N}}$$
 Ln $\left(\frac{100}{100 - RA}\right)$ + Δs

For materials showing an endurance limit ${\boldsymbol \Delta} s$ is taken as the endurance limit

$$S = \frac{E}{4\sqrt{N}}$$
 Ln $\left(\frac{100}{100 - RA}\right)$ + Se

B. F. Langer, 'Design of Pressure Vessels for Low Cycle Fatigue,' J. of Basic Engineering, ASME Transactions, September 1962.

Weld	Surface	Quality Levels (see Table 5.12)						
Condition	Condition	1	2	3	4	5	6	7
Full penetration	Machined	1.0	1.5	1.5	2.0	2.5	3.0	4.0
	As-welded	1.2	1.6	1.7	2.0	2.5	3.0	4.0
Partial Penetration	Final Surface Machined	NA	1.5	1.5	2.0	2.5	3.0	4.0
	Final Surface As-welded	NA	1.6	1.7	2.0	2.5	3.0	4.0
	Root	NA	1.5	NA	NA	NA	3.0	4.0
	Toe machined	NA	NA	1.5	NA	2.5	3.0	4.0
Fillet	Toe as-welded	NA	NA	1.7	NA	2.5	3.0	4.0
	Root	NA	NA	NA	NA	NA	3.0	4.0

Table 5.11 **ĞWeld Surface Fatigue-Strength-Reduction Factors**

Table 5.12 GWeld Surface Fatigue-Strength-Reduction Factors

Fatigue-Strength-Reduction Factor	Quality Level	Definition		
1.0	1	Machined or ground weld that receives a full volumetric examination, and a surface that receives MT/PT examination and a VT examination.		
1.2	1	As-welded weld that receives a f ul volumetric examination, and a surface that receives MT/PT and VT examination		
1.5	2	Machined or ground weld that receives a partial volumetric examination, and a surface that receives MT/PT examination and VT examination		
1.6	2	As-welded weld that receives a partial volumetric examination, and a surface that receives MT/PT and VT examination		
1.5	3	Machined or ground weld surface that receives MT/PT examination and a VT examination (visual), but the weld receives no volumetric examination inspection		
1.7	3	As-welded or ground weld surface that receives MT/PT examination and a VT examination (visual), but the weld receives no volumetric examination inspection		
2.0	4	Weld has received a partial or ful volumetric examination, and the surface has received VT examination, but no MT/PT examination		
2.5	5	VT examination only of the surface; no volumetric examination nor MT/PT examination.		
3.0	6	Volumetric examination only		
4.0	7	Weld backsides that are non-definable and/or receive no examination.		

Notes:

1. Volumetric examination is RT or UT in accordance with Part 7.

- 2. MT/PT examination is magnetic particle or liquid penetrant examination in accordance with Part 7
- 3. VT examination is visual examination in accordance with Part 7.