

Twin Cities ANSYS[®] User Meeting

November 2011

Mesh Discretization Error

- 1. Mesh Discretization: The "One-sided" Error Source
- 2. Tet Pregidous
- 3. Case Study A: Shape-Functions Effect
 - With and without mid-side nodes
 - Stresses & Deflection
- 4. Case Study B: Mesh Convergence
 - Node vs. Element (Averaged vs Unaveraged)
 - PRERR (SEPC/SMXB)

Mesh Discretization Error

- Often small compared to load/material property error/scatter
- Ownership of error lands on analyst
 - Often linked to "credibility" of whole analysis
- True Error analysis would likely show Mesh Discretization is minor issue
 - And yet... Scrutiny continues
 - And rules and criteria abound... (while other scatter goes unmentioned)

"It can be *measured*? Well let's fixate on it!"

Mesh Discretization Error

- A "one-sided" error source*
 - Predictions are usually *lower* than actual (not higher)
 - Excepting Singularities
 - Nagging feeling because of non-conservative nature
 - Stress is usually underpredicted*
 - Upper bound not determinable
 - Without employing knowledge of materials/loads/element shape functions discussed later

*Powergraphics results (classic) isn't so one-sided – discussed later

Level of Mesh Refinement

- Bias Against Tetrahedrons (Tet's)
 - Source of grievance?
 - Low order Tets (a.k.a "T4", a.k.a "non-midside noded Tet")
 - Too Stiff in bending / large error with 1 element through thickness
 - 1st Tet's (Berkely 1960's) were high order
 - You'd have to work at it to get ANSYS to create T4's (structural)
 - Tets (10 noded) are Less efficient per DOF
 - Longer solve times
 - Shorter meshing times
 - Added control allows refinement at location of interest
 - **More** efficient than Mapped meshing!
 - Less pleasing to the eye (esp. higher aspect ratios)
 - Stigmatism is receding over last decade

- Thick to thin rings with inner pressfit (radial expansion)
 - Stress gradient related to radius²
- Case Study A, Expansion of Thick/Thin Ring
 - Actually used 5° wedge

• Case Study A

Low Order Elements

- Peak Stresses have similar convergence patterns/rate

High Order Elements

- Case Study A
 - Peak Stresses have similar convergence patterns/rate

High & Low Order Elements

- Case Study A
 - OD Deflections

High & Low Order Elements

ANSYS User Meeting

- Case Study A
 - OD Deflections

- Case Study A Conclusions
 - Element Stress Gradient
 - Linear for high or low order elements
 - Element Displacement Gradient
 - Linear for low order element
 - 2nd order polynomial for high order element
 - Thin Rings are well approximated with single element through the thickness
 - This extends to beams as well

Mesh Discretization Error

- Case Study B
 - Stress along path
 - Node vs. Element (Averaged vs Unaveraged)
 - PRERR (SEPC/SMXB)

- Stress along path
 - Background stress of 180
 - KT =2.0

- Stress along path
 - Varying Mesh densities

Peak Stress

- Varying Mesh densities
 - WB 's adaptive mesh refinement automates this task refining only regions of interest (thanks, paul)

Mesh Convergence

ANSYS User Meeting

• Stress along path

• Stress along path: zoom

• Stress along path: Unaveraged Results

- Case Study B Conclusion:
 - Discontinuity of stress element-to-element
 relates to degree of mesh discretization error

- Discontinuity at element boundaries is key
- $\{\Delta \sigma_n^i\} = \{\sigma_n^a\} \{\sigma_n^i\}$ Difference at boundary

• Discontinuity at element boundaries is key

$$e_{i} = \frac{1}{2} \int_{VOI} \left\{ \Delta \sigma \right\}^{T} \left[D \right]^{-1} \left\{ \Delta \sigma \right\} d(VOI)$$

115-

- Energy difference per element
- Considers volume/stiffness

- Discontinuity at element boundaries is key
 - $e = \sum_{i=1}^{14} e_i$ Sum it over the model (selected region)

 $E = 100 \left(\frac{e}{U+e}\right)^{\frac{1}{2}}$ • Normalize it to the whole model energy (includes load magnitude)

Yields a single number! (PRERR, or Percentage error in the energy norm)

Error Assessment

• Percentage error in the energy norm (PRERR)

1.59

8.95

Medium

0.797

4.0

Error Assessment

Percentage error in the energy norm (PRERR)

0.56

1.13

ANSYS User Meeting

Error Assessment

- SMXB
 - Checks all nodes (doesn't necessarily correspond to the MX location!)
 - Only mentioned once in Help Manual!
 - Training Classes refer to it as a "confidence band"...

$$\sigma_{j}^{mxb} = max(\sigma_{j,n}^{a} + \Delta \sigma_{n})$$
Average stress from

Root Mean Square of: (avg. value – element value) for each element sharing node

Average stress from contributing elements (what's plotted)

'EOF