Realize Your Product Promise®

2013 Regional Conference Weld Sizing:

Using ACT for Robust Customization

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Rod Scholl Epsilon FEA, LLC

Weld Sizing: Using ACT for Robust Customization

- 1. Weld Sizing Historical Context
- 2. Customization From APDL to ACT
- 3. The Weld Extension Details
 - Geometric Intelligence
 - Determining Required Weld Size
 - Plotting Results
 - Level of Effort

ANSYS Confidential

ANSYS Weld Sizing: Historical Context

Weld Sizing often controlled by standards:

AISC (American Institute of Steel Construction) AWS (American Welding Society) ASME Boiler Pressure Vessel Code (BPVC) IIW (International Institute of Welding)

Historically sized with hand-calcs

- Geared toward beams more than irregular geometry
- Commonly uses Loads (Force and Moments)
 - Not stresses

American Welding Society The Strength Of Welding

ANSYS FEA Models Increasingly Available

FEA results are too localized

Singularities & Stress concentrations

"Hot-spot stress" Methods

- 1. Expects explicitly modeled size/geometry & requires nodes at toe
 - Must iterate on weld size
 - Some methods expect shell models
- 2. Geared toward fatigue failure at toe
- 3. Is predictive, not specification-compliant

Verity Method (Battelle, 2006)

- Integrated into FE-Safe and Hypermesh
- Has the three limitations above
- Is insensitive to mesh density and has better correlation/acceptance

Each company uses different specs, approaches, and methods!

ANSYS Weld Sizing: Design for Manufacture

Welding Manufacturing Costs are often nontrivial

- Never-ending squeeze on labor/materials
- Cost of FEA continues to fall (relative to build-and-test)
 - High cycle fatigue usually not testable at system level
- Margins added on top of Safety Factors
 - Weld process has huge variability
 - Indeterminate physical material properties
 - Residual stresses
 - Weld length/flaw count adds statistical factor
 - Statically indeterminate loading (not a simple beam)
 - This portion of overdesign can be mitigated using FEA

ANSYS Customization: From APDL to ACT

The Power of Customization

- Cost benefits
 - Automation usually has large ROI
- Quality Benefits
 - Standardization/Codification of Design Process
- Individual Benefits
 - Increasing individual contribution over time

The Risks of Customization

- Obsolescence (ANSYS development always adding features)
- Version Repair / Upkeep / Training & Documentation

ANSYS Customization: From APDL to ACT

APDL (ANSYS Parametric Design Language)

- Scripting in APDL has been viable bridge (snippets)

Journaling / Scripting in Workbench allows for task automation

- *DO loop functionality for repetitive tasks
- Log File allows a low initial learning investment
- Limited interaction with numerical model/results

ACT (ANSYS Customization Toolkit) – New!

- Full access and manipulation of the model / matrices via API's
- Can encapsulate legacy APDL scripts with low investment
- Object Oriented! (Python)
- ANSYS inc. committed to long term support
- Expanding Library of Free Extensions (some open source)
 Downloads at the customer portal of http://support.ANSYS.com

ANSYS ACT Released at 14.5

- Manageable learning curve
 - Python is within many graduates' skill sets (Yes, we're getting old)
 - Developers' guide from ANSYS
 - Training is available
 - Basic Tool to browse Workbench API's
- Extension can call uncompiled APDL scripts
 - Do what you can in Python -- put the rest in APDL
 - Incrementally learn Python
 - Edit APDL without ACT license!
- Robust Unit inputs
- You get to make your own button icon ...which is fun.

ANSYS Workbench Application Customization Toolkit Developers' Guide

Declaration Syntax										
namespace A	nsys.AAP.PublicAPIs.	Selection								
Table 1: Mer	nbers									
SelectionInfo	Selecti	SelectionInfo class								
ISelectionMg	r ISelect	ISelectionMgr Interface								
SelectionType	Enum Selecti	m SelectionTypeEnum enumerator								
SelectionInfo Declaration public interfa Table 2: Mer	class on Syntax ce ISelectionInfo n bers									
SelectionInfo Declaration public interfact Table 2: Mer Property	class on Syntax :e ISelectionInfo nbers IId	Gets or sets the ID of this ISelectionInfo object.								
SelectionInfo Declaratic public interfac Table 2: Mer Property Property	class on Syntax ce ISelectionInfo nbers Id Ids	Gets or sets the ID of this ISelectionInfo object. Gets or sets selected IDs.								
SelectionInfo Declaratic public interfar Table 2: Mer Property Property Property	class on Syntax ce ISelectionInfo nbers Id Ids Name	Gets or sets the ID of this ISelectionInfo object. Gets or sets selected IDs. Gets or sets the name of this ISelectionInfo object.								

ANSYS The Weld Extension

The Weld Extension has four steps

- 1. Pass surface selection and results to Mechanical APDL Required because we are including an APDL core Mechanical will launch Mechanical APDL in background
- 2. Intelligent Geometry Recognition
- 3. Load/Stress Calculation
- 4. Pass results back to WB and Plot

This is the challenging part

ANSYS Step 1: Pass Selection and Results

Pass surface selection and results to Mechanical APDL

1. This is simple (once you get the hang of it)

Can enforce scoping to one type(s) of geometry

In our case, it is restricted to two surfaces

Enter other data in details window (as dropdown or variable)

ANSYS Step 1: Pass Selection and Results, cont'd

Enforce error checking to prevent incompatible choices

No Intersection!

ANSYS Step 1: Pass Selection and Results, cont'd

Plot weld size requirement per AISC Strength

Or plot the weld stresses in local coordinates

\Box	Definition					
	Result Type	AISC	Strer	ngth		-
	Ductility Factor(Length/Width)	AISC	Strer	ngth		
	Filler Material Strength	Stress	5			
		-				
	Definition					
	Result Type	Stress				
	Stress Direction	SX (Av	No	rmal)		-
	Ductility Factor(Length/Width)	SX (Avg	į. No	rmal)		
	Filler Material Strength	SYX (A)	/g. S	hear Parallel)		
	Ву	SXZ (A	/g. S	hear Perpendi	cular)	
	Display Time	SX (We	ld-Sic	de Normal)		
\Box	Results	SYX (W	eld-S	Side Shear Par	allel)	
	Minimum	SXZ (W	eld-S	Side Shear Per	pendicular)	
		SX (Far	-Side	Normal)		
		SYX (Fa	ir-Sid	e Shear Parall	el)	
		SXZ (Fa	r-Sid	e Shear Perpe	endicular)	•

ANSYS Confidential

ANSYS Step 2: Geometry Recognition

Robust Geometry Recognition

- Using APDL, determined normal thickness (150 lines of script)
 - Done for each shared node
 - Allows for curved weld joints
 - Allows for varying thickness
- Queries normal and shear stresses
 - On both parent materials
 - On front and back of solid

ANSYS Confidential

ANSYS Step 3: Averaging Stresses

Averaged along length 4X the thickness (100 lines of script)

- One of many methods to account for ductility
- Determined minimum Weld Size (25 lines of script)
 - Used AISC method, Chapter J, Table J2.5
 - Different extensions/calc's for each weld type: double fillet, PJP, etc.

Load Type and Direction Relative to Weld Axis	Pertinent Metal	Φ and Ω	Nominal Strength (Fom or Fw)	Effective Area (A _{BM} or A _W)	Requ	MANUAL
Tension Normal to weld axis	COMPLETE-JOINT-PENETRATION GROOVE WELDS Strength of the joint is controlled by the base metal					AMERICAN DISTITUTE STEEL GANNER CTION INC. THERMONET ANTAGE
Compression Normal to weld axis	Strength of the joint is controlled by the base metal				Filler r equa less than m	natching filler metal is permitted.
Tension or Compression Parallel to weld axis	Tension or compression in parts joined parallel to a weld need not be considered in design of welds joining the parts.				Filler metal with a strength level equal to or less than matching filler metal is permitted	
Shear	Strength of the joint is controlled by the base metal				Matching <i>filler metal</i> shall be used. ^(e)	

ANSYS Step 4: Plotting Results

Pass results into Workbench Mechanical for plotting

- Uses ascii text file, written from Mechanical APDL
- Read into Mechanical and plotted
 - Vector style plot chosen
 - Option to plot raw stresses (normal, shear, etc.)

System Level Example: Wind Turbine Tower

Extend to Large Model

- Full model used for modal/vibration/seismic
- CJP welds expense vs. PJP
- Loading
 - Tapered cylindrical bending (blade load/moment)
 - Wind load varies top to bottom (not linearly)
 - Wind load varies circumferentially (drag)
 - <u>Not</u> an easy hand-calc
 - (differential equation might be an unsolved form)

System Level Example: Wind Turbine Tower

Material is 2" thick, so everything < 2" may have cost savings from PJP welds.

B: Static Structural Plot All Fillet Calcs 4 Expression: RES20VECTORS Time: 1 5/23/2013 10:21 PM 2.284 Max 2.0883 1.8925 1.6968 1.501 1.3053 1.1095 0.91379 0.71804 0.5223 Min

ANSYS Level of Effort / Q & A

40 hrs -- Reaching (very) Basic Functionality with ACT

- No previous experience with python
- Used training materials, tutorials, and sample files
- It would've been *much* easier/quicker with a mentor or instructor
- 3 hrs Later, wrote "Plot all Welds" Extension
- Not user friendly, but functional for me.

80 hrs – Writing the APDL Script

• Could've doubled or halved that depending on topology flexibility

Q & A